
Pictures and Loops

In the previous section we saw how to change the red, green, and blue values of one
pixel. Now, suppose we want to do this for many pixels, or even all of the pixels in
an image. If we have 640 x 480 = 307,200 pixels, do you want to type in 307,200
setRed statements? Don’t worry, we’re not going to do this! We are going to use a
loop statement to do this. A loop is a way to tell the computer to do the same thing
(or almost the same thing) over and over again. We want to do the same thing, but
to a different pixel each time.

A for loop will execute a block of commands that you specify for each item in a list
that you provide. As part of the loop statement, you will specify a variable that will
get the value of a different item from your list each time the group of commands
executes. The list is an ordered collection of data – it could be numbers, strings,
pixels, or many other different kinds of collections.

A for loop in Python looks like the following:

 𝑓𝑜𝑟 ______________ 𝑖𝑛 ______________:

 # 𝑑𝑜 𝑠𝑜𝑚𝑒 𝑐𝑜𝑜𝑙 𝑠𝑡𝑢𝑓𝑓 ℎ𝑒𝑟𝑒

 # 𝑑𝑜 𝑠𝑜𝑚𝑒 𝑚𝑜𝑟𝑒 𝑐𝑜𝑜𝑙 𝑠𝑡𝑢𝑓𝑓 ℎ𝑒𝑟𝑒

The very first part of this statement is the keyword for. The first blank (after the

keyword for) will be filled in with your choice of a variable name, typically a name

that represents the elements in your list. This variable is followed by the keyword
in. The second blank (after the keyword in) will be filled in with the list for which
you want to repeat the code with. At the end of the line you must have a colon, to
indicate that what comes next is the block of code you want to repeat. The lines of
code that are to be repeated should all be indented, and indented the same amount.

Since we will be working with pictures, we would like to be able to loop through all
of the pixels in a picture in order to manipulate their colors. There is a function in
the jes4py library called getAllPixels that will return a list of all the pixels in a
picture. (Note: You could also use the function getPixels, but getAllPixels is
a more descriptive name.)

Example 1: The following code segment will change the red value of each pixel to 0.

 𝑚𝑦𝑃𝑖𝑐𝑡 = 𝑚𝑎𝑘𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑘𝐴𝐹𝑖𝑙𝑒())

𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑚𝑦𝑃𝑖𝑐𝑡):
𝑠𝑒𝑡𝑅𝑒𝑑(𝑝𝑥, 0)

The variable px was chosen to represent each of the pixels that get returned from

the call to getAllPixels. The first time through the loop, px will represent the

pixel at location (0, 0), and that pixel’s red value will be changed. The second time
through the loop, px will represent the pixel at location (1, 0), and that pixel’s red
value will be changed. The loop will continue executing until px has represented
each of the pixels in the picture.

Setting all of the red values to 0 may seem a little drastic, although it may produce a
cool result. Let’s consider a function to cut the red value of a picture by a quarter.

Example 2: Reducing red by 25%

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑟𝑒𝑑𝑢𝑐𝑒 𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑦 25%
𝑑𝑒𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑅𝑒𝑑(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑐𝑜𝑝𝑦 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥)
 𝑠𝑒𝑡𝑅𝑒𝑑(𝑝𝑥, 𝑣𝑎𝑙𝑢𝑒 ∗ 0.75)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤𝑙𝑦 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

Notice that the loop structure in the middle of this function looks exactly like the
loop we used in the previous example. The code inside the loop is slightly different -
here we get the current amount of red in a pixel and then change it. By multiplying
the red value by a factor less than 1 we are making the red value smaller. Reducing
the color by 25% means we have 75% of the color remaining. That’s why we
multiply the current red value by 0.75.

We also see in this example that a picture gets passed in as a parameter, and then
the first thing we do is duplicate it. We do this so that we don’t modify the original
picture. We create a new picture identical to the original, and then make our
changes to the new picture. At the end of the function, we return the new picture so
that we can use or save our results.

In the main function, we would call this function with code something like the
following:

𝐼𝑓 __𝑛𝑎𝑚𝑒__ == ‘__𝑚𝑎𝑖𝑛__’:

𝑚𝑦𝑃𝑖𝑐𝑡 = 𝑚𝑎𝑘𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑘𝐴𝐹𝑖𝑙𝑒())

𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑟𝑒𝑑𝑢𝑐𝑒𝑅𝑒𝑑(𝑚𝑦𝑃𝑖𝑐𝑡)
𝑠ℎ𝑜𝑤(𝑛𝑒𝑤𝑃𝑖𝑐𝑡)
𝑛𝑒𝑤𝑃𝑖𝑐𝑡. 𝑠ℎ𝑜𝑤() #𝑊𝑖𝑛𝑑𝑜𝑤𝑠 𝑢𝑠𝑒𝑟𝑠

How could we modify Example 2 so that we make the red values larger? The only
change we need to make is to change the multiplication factor to be a value larger
than 1 instead of smaller than 1.

Example 3: Increase the amount of red in a picture

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑦 20%
𝑑𝑒𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑒𝑑(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑐𝑜𝑝𝑦 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥)
 𝑠𝑒𝑡𝑅𝑒𝑑(𝑝𝑥, 𝑣𝑎𝑙𝑢𝑒 ∗ 1.2)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤𝑙𝑦 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

What happens if you increase the red in a picture that has a lot of red? When you
multiply the red values by something larger than 1, there is a chance that the
resulting value will be greater than 255. So what should we do? One possibility is
that the program could crash. (This is undesirable, so designers of jes4py have
avoided this possibility!) The other options would be to clip (i.e., cap) the value of
red at 255, or to wrap it around using the modulo [%](remainder) operator.
Wrapping around may give you unexpected (but possibly interesting) results. For
example, if the red value was 150 and you tried to double the red, the new value
would be 300.

We can’t have a red value of 300, so we would either set it to 255, or let it wrap
around to 44 (300 – 256). The jes4py library was designed to offer some protection.
In this case, the colors are automatically capped at 255.

So far, we have only done one color manipulation in the loop. There is nothing
preventing us from doing more than one color manipulation at time. Suppose we
want to add a sunset effect to our picture. When you view a sunset, the sky seems to
redden, while everything gets darker. One way to do this could be to reduce the
amount of green and blue in the picture. By doing this, the red will stand out more,
and the other colors will get darker.

Example 4: Sunset Effect

𝑇ℎ𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑠𝑢𝑛𝑠𝑒𝑡 𝑒𝑓𝑓𝑒𝑐𝑡
𝑑𝑒𝑓 𝑚𝑎𝑘𝑒𝑆𝑢𝑛𝑠𝑒𝑡(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑚𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑔𝑟𝑒𝑒𝑛 𝑎𝑛𝑑 𝑏𝑙𝑢𝑒 𝑖𝑛 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑔𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥)
 𝑏𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥)
 𝑠𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥, 𝑔𝑣𝑎𝑙𝑢𝑒 ∗ 0.70)
 𝑠𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥, 𝑏𝑣𝑎𝑙𝑢𝑒 ∗ 0.70)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

Notice, again, in this example, we are using the same loop structure to iterate
through and change each of the pixels in the pictures. The big difference here is that
we are getting and changing both the green and the blue values inside the loop.

Creating Negatives

To create the negative of an image, we want the opposite of each the current values
of red, green, and blue. So what does this mean? If we have no red (i.e., the red
value is 0), we need all red (i.e., a red value of 255). If there is a lot of red, we need a
little bit of red, and vice versa. So, say the red value of a pixel in a picture is 60. The
red value in the corresponding pixel in the negative image would be 255 – 60 = 195.
So, to create a picture that is the negative, we compute the negative value (255 –
original value) of each of the red, green, and blue components for each pixel in the
original picture. We then set the colors of the pixels in the new picture to these new
colors. Our function would look like:

Example 5: Creating a negative image

𝑇ℎ𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑚𝑎𝑔𝑒
𝑑𝑒𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑚𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑟𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥)
 𝑔𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥)
 𝑏𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥)
 𝑠𝑒𝑡𝑅𝑒𝑑(𝑝𝑥, 255 − 𝑟𝑣𝑎𝑙𝑢𝑒)
 𝑠𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥, 255 − 𝑔𝑣𝑎𝑙𝑢𝑒)
 𝑠𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥, 255 − 𝑏𝑣𝑎𝑙𝑢𝑒)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

We could modify this slightly by using the makeColor function. This function

takes numerical values for red, green, and blue, and creates a new color with these
values. Our function then would look like:

𝑇ℎ𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑚𝑎𝑔𝑒
𝑑𝑒𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑚𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑟𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥)
 𝑔𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥)
 𝑏𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥)
 𝑛𝑒𝑔𝐶𝑜𝑙𝑜𝑟 = 𝑚𝑎𝑘𝑒𝐶𝑜𝑙𝑜𝑟(255 − 𝑟𝑣𝑎𝑙𝑢𝑒, 255 − 𝑔𝑣𝑎𝑙𝑢𝑒, 255 − 𝑏𝑣𝑎𝑙𝑢𝑒)
 𝑠𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑝𝑥, 𝑛𝑒𝑔𝐶𝑜𝑙𝑜𝑟)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

Creating Grayscale Images

Creating grayscale images is also not too difficult. When the red component, green
component, and blue component all have the same value, the resultant color is gray.
This means that we will have 256 different shades of gray, ranging from black at (0,
0, 0), to white at (255, 255, 255). The only tricky part is figuring out what the
replicated value should be. We want a sense of the intensity of the color, or the

luminance. One way to compute this is to compute the average of the red, green,
and blue component colors. Our function would look like the following:

Example 6: Creating a grayscale image

𝑇ℎ𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑎 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛 𝑖𝑚𝑎𝑔𝑒
𝑑𝑒𝑓 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑚𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑡ℎ𝑒 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑟𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥)
 𝑔𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥)
 𝑏𝑣𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥)
 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = (𝑟𝑣𝑎𝑙𝑢𝑒 + 𝑔𝑣𝑎𝑙𝑢𝑒 + 𝑏𝑣𝑎𝑙𝑢𝑒)/3
 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟 = 𝑚𝑎𝑘𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)
 𝑠𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑝𝑥, 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

As it turns out, this method really oversimplifies the notion of grayscale. We can
actually take into account how the human eye perceives luminance – we consider
blue to be darker than red, even if there is the same amount of light reflected off. So
we will weight blue lower, red and green higher when we compute the average. Our
modified function would look like:

Example 7: Grayscale with weights

𝑑𝑒𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐺𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒):
 # 𝑚𝑎𝑘𝑒 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ
 𝑛𝑒𝑤𝑃𝑖𝑐𝑡 = 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑖𝑐𝑡𝑢𝑟𝑒(𝑝𝑖𝑐𝑡𝑢𝑟𝑒)

 # 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠
 𝑓𝑜𝑟 𝑝𝑥 𝑖𝑛 𝑔𝑒𝑡𝐴𝑙𝑙𝑃𝑖𝑥𝑒𝑙𝑠(𝑛𝑒𝑤𝑃𝑖𝑐𝑡):
 𝑛𝑒𝑤𝑅𝑉𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝑅𝑒𝑑(𝑝𝑥) ∗ 0.299
 𝑛𝑒𝑤𝐺𝑉𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑛(𝑝𝑥) ∗ 0.587
 𝑛𝑒𝑤𝐵𝑉𝑎𝑙𝑢𝑒 = 𝑔𝑒𝑡𝐵𝑙𝑢𝑒(𝑝𝑥) ∗ 0.114
 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 = 𝑛𝑒𝑤𝑅𝑉𝑎𝑙𝑢𝑒 + 𝑛𝑒𝑤𝐺𝑉𝑎𝑙𝑢𝑒 + 𝑛𝑒𝑤𝐵𝑉𝑎𝑙𝑢𝑒
 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟 = 𝑚𝑎𝑘𝑒𝐶𝑜𝑙𝑜𝑟(𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒, 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒, 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒)
 𝑠𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑝𝑥, 𝑛𝑒𝑤𝐶𝑜𝑙𝑜𝑟)

 # 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑖𝑐𝑡

We will now test some of these functions and write some of our own functions to
manipulate pixel colors in the next mini-lab and lab.

Mini-Lab: For loops for manipulating pixels in a picture

Lab: Simple Picture Manipulation

http://www.cs.kzoo.edu/cs107/Labs/IntroForLoop.shtml
http://www.cs.kzoo.edu/cs107/Labs/Lab2.shtml

